
농식품 분야의 기술적 해결책 동향

김병수(성공회대/건강과대안)

- 1. WEF, 푸드테크
- 2. 대체육, 스마트팜
- 3. 탄소중립 관련 기술
- 4. 유전체 편집 작물

- 먹거리와 농업 영역은 4차 산업혁명의 적용이 늦은 분야로 지속적인 활용 노력이 필요함.
- 2050년까지 약 100억명에게 영양가 높은 먹거리 제공 필요. 온실가스 배출량의 20-30%, 물 소비량의 70% 농식품 분 야에서 발생. 이러한 문제를 해결하기 위해 첨단 기술을 적극 활용할 필요가 있음 (아래 기술들을 온실 가스 배출, 물 사용 량, 토지 이용 면적으로 평가하고 있으며 동시에 관련 기업에 대한 투자 필요성 언급)
- '수요 형태의 전환 기술(Changing the shape of demand)', '가치 사슬의 연계 촉진 기술(Promoting value-chain linkages)', '효과적인 생산 체계개발 기술(Creating effective production systems)' 3개 분야 12개 혁신 기술을 제시

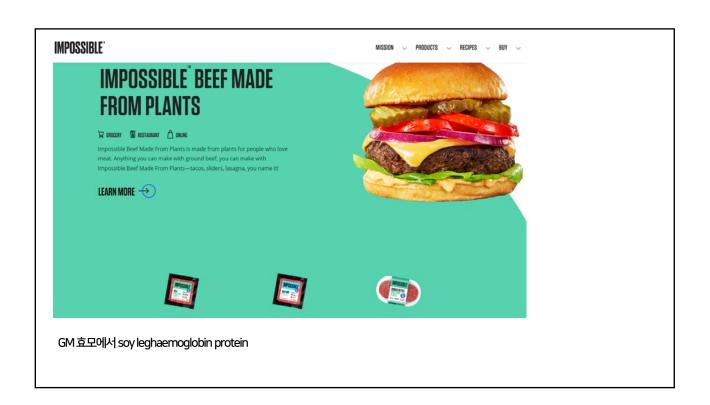
수요 형태 전환 기술

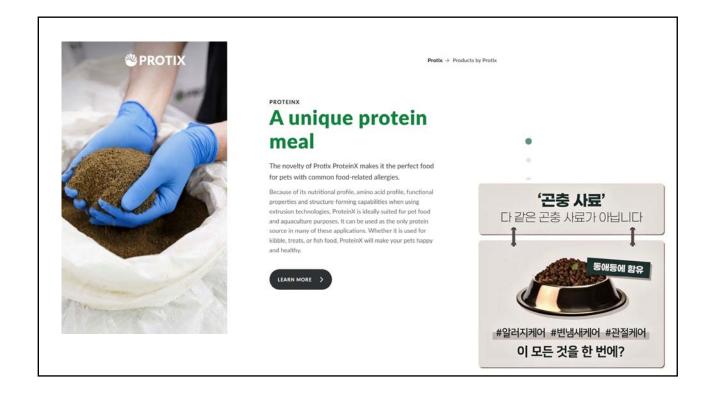
환경 부담 감소, 식품 낭비 감소, 맞춤 영양 섭취

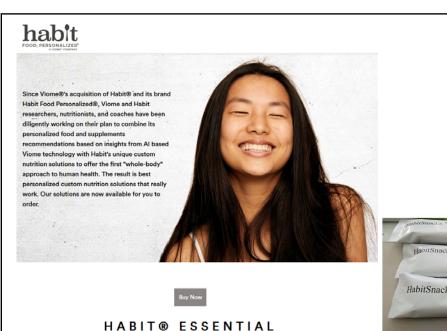
1.대체 단백질

곤충, 식물, 세포 배양

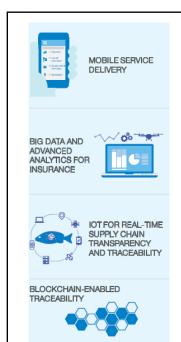
2030년까지 10~15%를 대체 단백질로 바꾸면 물 사용량 사용량의 7~12%를 감소 2억 5천만~4억 ha의 토지가 절약


ex) Impossible burger (GM 효모에서 soy leghaemoglobin protein) Protix(곤충 단백질 생산)


2.식품의 안전, 질, 추적을 위한 식품 감지(sensing) 기술


신선도 파악으로 음식물 쓰레기 감소, 식품사기에도 대응 가능 ex) ImpactVision (hyperspectral technology 사용)

3.맞춤형 영양 제공을 위한 영양유전학(nutrigenetics)

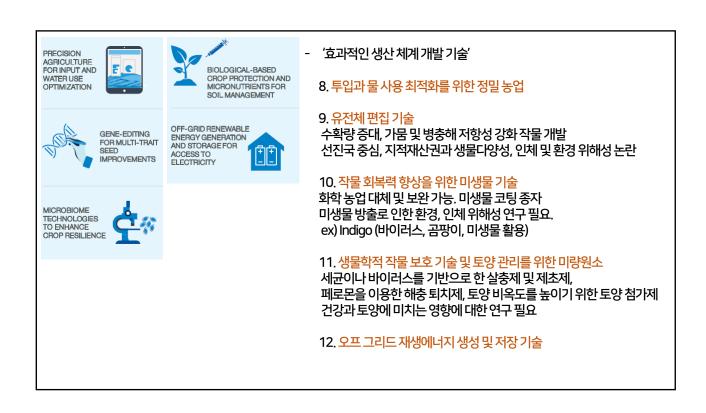

개인의 유전체에 근거한 맞춤형 식품 섭취로 비만 및 심혈관 질환 감소 특정 유전자가 영양소의 흡수, 운반,저장 또는 대사에 미치는 영향에 대한 연구 부족 ex) Habit (DNA에 기반한 맞춤 식단 추천 서비스)

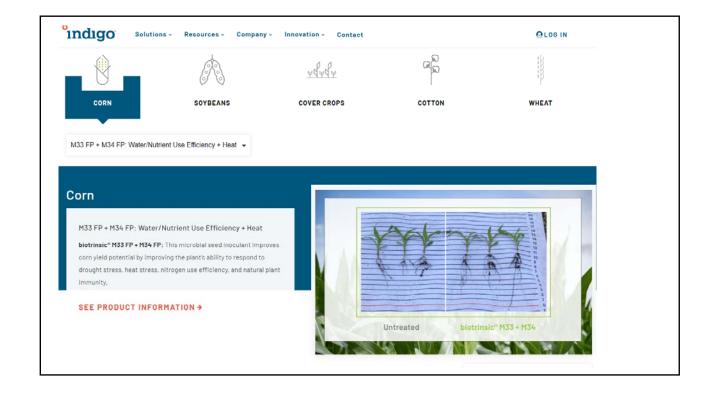
가치 사슬의 연계 촉진 기술

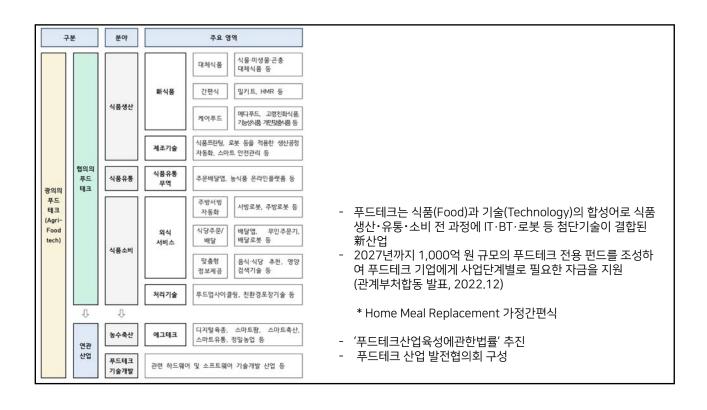
4. 모바일 서비스

농업 정보 제공, 실시간 거래 및 재고량 파악을 통한 시장 접근성 강화

5. 보험을 위한 빅데이터 수집 및 분석

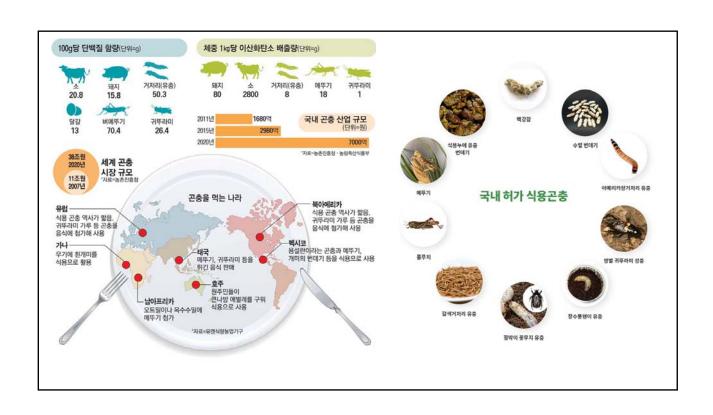

농업 부문 재해 위험도 평가, 농가 맞춤형 보험상품 개발 ex) Reuters Market Light's (RML)- 농가에서 나온 데이터와 인공위성 데이터 통합


6. 실시간 공급망 투명성과 추적을 위한 사물인터넷


운송, 보관 상태를 실시간 확인, 공급과 수요 확인, 소비자 구매 데이터 확인

7.블록체인

블록체인 기술을 활용한 식품 정보 모니터링



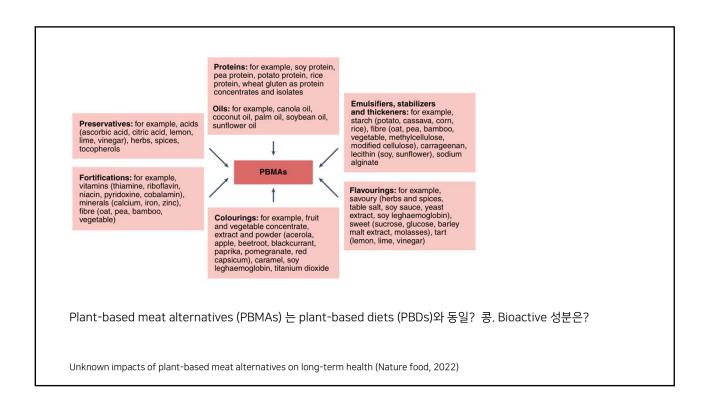
종류	정의
배양육	체외 배양을 통해 생산된 조직 또는 세포(줄기세포, 근세포)를 바탕으로 생산한 고기
식물성 고기	식물, 해조류, 미생물 등에서 추출한 식물성 단백질 성분을 이용해 만든 고기
식용곤충	식용이 가능한 곤충으로 국가별 차이가 존재 ²⁾

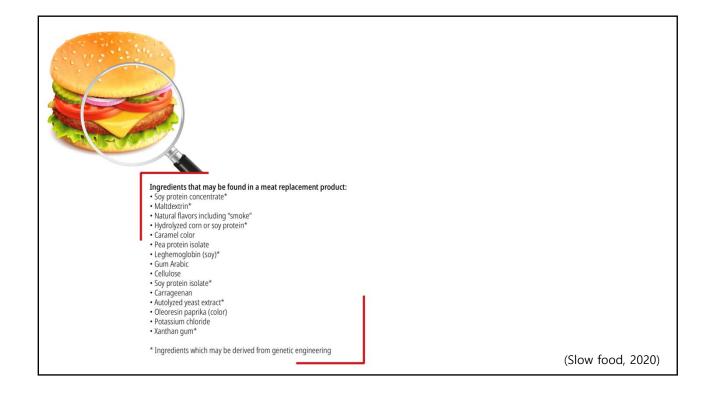
'곤충산업의 육성 및 지원에 관한 법률' 내 식용 곤충 사육 기준에 적합하고, '식품위생법' 제7조 1항에 따라 식품원료로 등록된 곤충

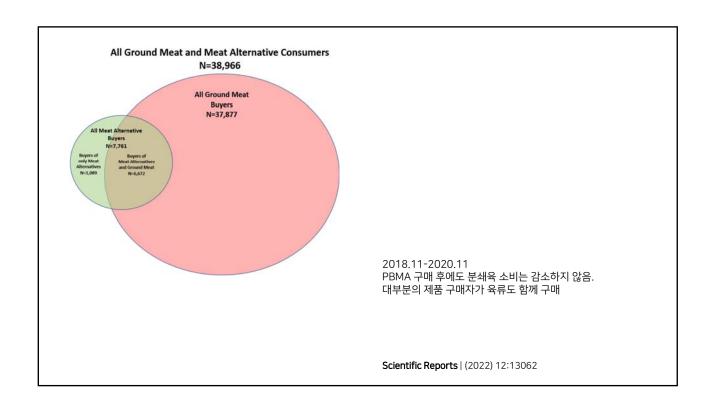
테스코 대체육 광고 英에서 금지..."대체육이 환경에 더 좋다는 근거 없다"

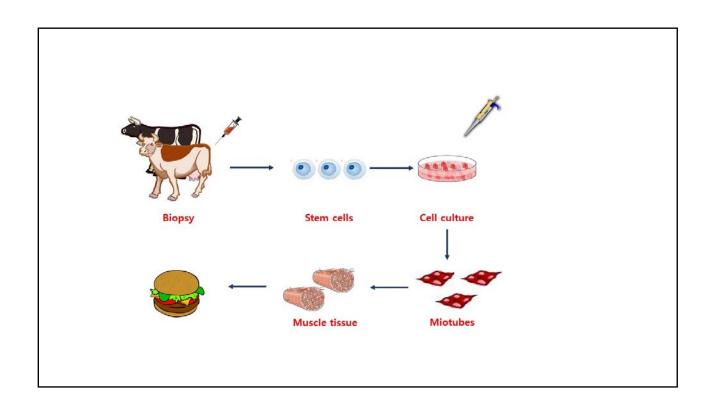
음 김도연 기자 | ② 중인 2022.06.16 13.57

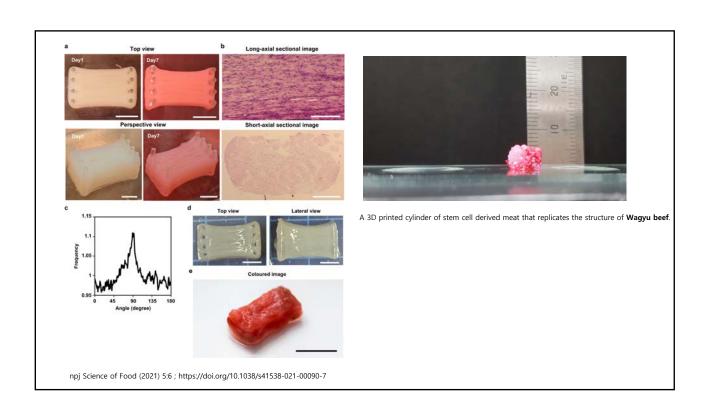
英 광고심의위원회 "생산유통 전반적인 영향 고려할 때 대체육이 환경 영향 적다는 근거 없어"


0-1-1-02-10-12-1-1-1-1-1-1-1


- 식물성 대체육 - GM 콩 + GM 성분 , <mark>초가공식품</mark> cf) non-GM 성분, 덜가능한제품도 있음. 대체육 소비로 육식 감소 ?/ 광고 및 성분 표시




안전성에 대한 증거 부족, 표시 문제


* CFS는 식용으로 처음 사용된 GM soy leghemoglobin을 식품첨가물로 승인한 FDA를 상대로 소송 중 (2020)

국내 기업 셀미트가 개발한 배양육 독도 새우, 투자자 대상, 싱가폴에서 시식회 최근 무혈청 배양액 개발로 주목

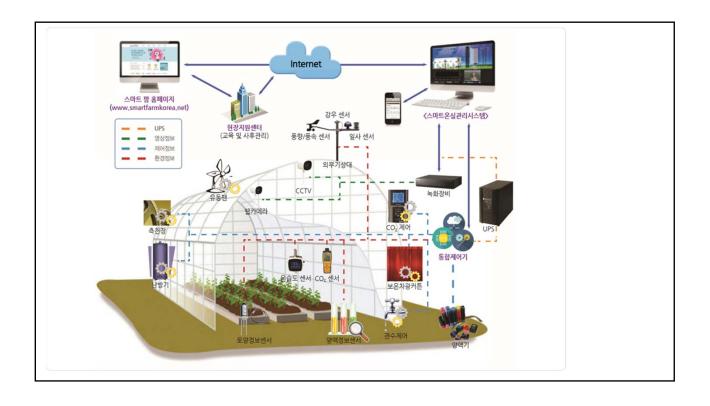
Cf) 소태아혈청 FBS(Fetal Bovine Serum) 도축 후 소 태아 꺼내서 추출/ 윤리적 문제, 가격

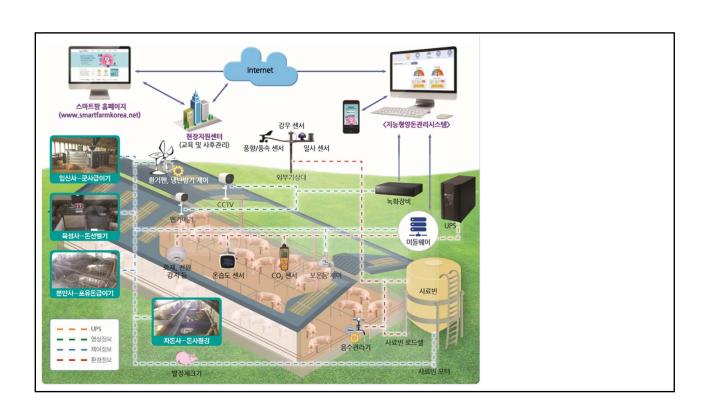
New Results

A Follow this preprint

Environmental impacts of cultured meat: A cradle-to-gate life cycle assessment

Derrick Risner, Yoonbin Kim, Cuong Nguyen, Justin B. Siegel, Edward S. Spang doi: https://doi.org/10.1101/2023.04.21.537778 This article is a preprint and has not been certified by peer review [what does this mean?].


- kg당 배출되는 온실가스(이산화탄소 기준)가 같은 양의 일반 쇠고기보다 4~25배
- 배양액을 구성하는 포도당, 아미노산, 비타민, 소금, 미네랄 등의 성분을 얻고 정제하는 데 들어가
- 는 에너지, 실험실의 생산 시설을 가동 전력 등을 계산 등. 배양육 생산 전 과정에 필요한 에너지 산출
- 대량 생산 단계에서는 더 늘어날 것으로 추산 (한겨레 2023.5.17)


스마트팜

스마트팜


- 1. 정보통신기술을 비닐하우스, 축사, 과수원 등에 접목하여 원격·자동으로 작물과 가축의 생육환경을 적정하게 유지관리할 수 있는 농장.
- 2. 농업생산분야이외에 유통소비 및 농촌생활에 이르기까지 현장의 혁신을 도모할 수 있도록 적용하는 모델
- 시설 원예, 과수, 축산으로 나눌 수 있음. + 노지, 수직 농장
- * 운영 원리
- 생육환경 유지관리 SW(온실·축사 내 온 ·습도, CO2 수준 등 생육 조건 설정)
- 환경정보 모니터링(온·습도, 일사량, CO2, 생육 환경 등 자동 수집)
- 자동·원격 환경관리(냉·난방기 구동, 창문 개폐, CO2, 영양분·사료 공급 등)

자료: 농림축산식품부· 농촌진흥청· 과학기술정보통신부 보도자료, 「스마트팜 연구개발(R&D), 도약의 날개를 달다!- 「스마트팜 다부처 패키지 혁신기술개발』사업 예비타당성조사 통과, 2021년부터 7년간 3,867억 원 투자-」, 2019.10.29.,p.7.

- 농림축산식품부는 2014 (창조경제)년부터 농업의 고도화, 농업인 고령화 대응, 청년 농업인 육성 등을 목적으로 한국형 스마트팜 모델 개발·보급 및 R&D 지원사업을 추진.
- ○100대 국정과제이자 혁신 성장 8대 선도사업으로 선정(17.11) 2018년 이후 스마트팜 확산·고도화를 위한 1) 청년 창업 생태계 조성, 2) 산업 인프라 구축, 3) '스마트팜 혁신밸리' 조성을 주요 정책과제로 추진.
- '스마트 팜 다부처 패키지 혁신기술개발'(농림축산식품부, 농진청 + 과기정보통신부) 2021년부터 2027년까지 국비 3,333억 원과 민자 534억 원을 투자.
- 장기적으로 K-farm 수출 산업으로 육성. (UAE, 카자흐스탄 등) or 동남아 지원 사업 ('K-디지털농업')
- Cf. 스마트팜 도입 1년차 (2018년) 150개 표본 농가를 대상으로 실시한 설문조사 생산성(단위 면적당 생산량)은 31.1%, 1인당 생산량은 21.1% 증가, 품질 향상, 소득 향상 효과도 나타남. 에너지 비용은 6,080원/3.3㎡에서 6,100원/3.3㎡으로 3.3㎡당 20원이 증가(0.3%)

쟁점

- 스마트팜 정의
- 정책 방향: '한국형 스마트팜' 사업의 목적, 방향성은 친환경적 요소가 거의 없음.

생산성 향상, 관련 산업 육성, 청년 일자리 창출

f. 기후변화에 대응 기술 ?- 폭염 및 폭우 등 외부환경 변화에 대응, 생산성 향상 및 노동력 감소 효과

- 에너지 소비 ?: 온도 조절 및 운영을 위해 등유, LPG, 전기 등을 사용 // 평가 기준 필요
- 친환경? / 무농약 이지만 유기농은 아님. (흙이 아닌 양액 사용)
- 재배작물
- 한국형?:한국의 농업 구조, 농업 계의 수요 및 자연·기후·지역적 특성 등 고려?
- 환경/사회적으로 지속가능한 농업?, 한국 현실에 맞는 정책? 거대장치 산업

국가명 기준연도 기존 NDC 신규 NDC 배출량 피크 미국 2005 * 32.5~35% 50~52% 2000 캐나다 2005 30% 40~45% 2007 EU 1990 40% 55% 1990 영국 1990 53% 68% 1990 독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% (*18년 대비) (참정)	국가명 기준연도 기존 NDC 신규 NDC 배출량 피크 미국 2005 *32.5~35% 50~52% 2000 캐나다 2005 30% 40~45% 2007 EU 1990 40% 55% 1990 영국 1990 53% 68% 1990 독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018		주요국 ND	C (22.1)				
캐나다 2005 30% 40~45% 2007 EU 1990 40% 55% 1990 영국 1990 53% 68% 1990 독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018	캐나다 2005 30% 40~45% 2007 EU 1990 40% 55% 1990 영국 1990 53% 68% 1990 독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018	11111111	국가명	기준연도	기존 NDC	신규 NDC	배출량 피크	
EU 1990 40% 55% 1990 영국 1990 53% 68% 1990 독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018	EU 1990 40% 55% 1990 영국 1990 53% 68% 1990 독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018		미국	2005	* 32.5~35%	50~52%	2000	
영국 1990 53% 68% 1990 독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018	영국 1990 53% 68% 1990 독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018		캐나다	2005	30%	40~45%	2007	
독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018	독일 1990 40% 65% 1990 일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018		EU	1990	40%	55%	1990	
일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018	일본 2013 26% 46% 2013 한국 2017 24.4% 40% 2018		영국	1990	53%	68%	1990	
한국 2017 24.4% 40% 2018	한국 2017 24.4% 40% 2018		독일	1990	40%	65%	1990	
한국 2017 24.4% 40% (18년 대비) 2018 (잠정)	한국 2017 24.4% (18년 대비) 2018 (잠정)		일본	2013	26%	46%	2013	
			한국	2017	24.4%	40% ('18년 대비)	2018 (잠정)	

□ 부문별 감축목표

(단위: 백만톤CO₂e, 괄호는 '18년 대비 감축률)

구분	부문	2018년	2030 목표					
TE	丁正	배출량	기존 NDC ('21.10)	수정 NDC ('23.3)				
바	출량 합계	727.6	436.6 (40.0%)	436.6 (40.0%)				
	전 환	269.6	149.9 (44.4%)	145.9 (45.9%) ¹⁾				
	산 업	260.5	222.6 (14.5%)	230.7 (11.4%)				
	건 물	52.1	35.0 (32.8%)	35.0 (32.8%)				
배출	수 송	98.1	61.0 (37.8%)	61.0 (37.8%)				
메돌	농축수산	24.7	18.0 (27.1%)	18.0 (27.1%)				
	폐기물	17.1	9.1 (46.8%)	9.1 (46.8%)				
	수 소	(-)	7.6	8.4 ²⁾				
	탈루 등		3.9	3.9				
흡수	흡수원	(-41.3)	-26.7	-26.7				
	ccus	(-)	-10.3	-11.2 ³⁾				
제거	국제감축	(-)	-33.5	-37.5 ⁴⁾				

2023.4.10. 탄소중립·녹색성장국가전략 및 제1차국가기본계획

2) 그린수소 22년 0% - 30년 2.1% (재생에너지 활용 물전기분해수소) 4) 베트남, 몽골, 가봉, 인도네시아

농업분야온실가스배출량

(단위: 백만톤 CO₂eq.)

								(セカ・ドロ	E CU26q.)
부문	1990	1995	2000	2005	2010	2015	2017	2018	2019
4A 장내발효	3.0	4.1	3.4	3.3	4.3	4.3	4.4	4.5	4.6
4B 가축분뇨처리	2.8	4.1	3.9	4.0	4.8	4.6	4.7	4.9	4.9
축산 소계	5.8	8.2	7.2	7.3	9.1	8.9	9.1	9.4	9.5
4C 벽재배	10.5	9.2	8.9	8.4	7.8	6.8	6.5	6.3	5.9
4D 농경지토양	4.6	5.4	5.2	5.0	5.2	5.2	5.3	5.5	5.5
4F 작물잔사소각	0.03	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.02
경종 소계	15.2	14.7	14.1	13.4	13.0	12.1	11.9	11.7	11.5
합계	21.0	22.8	21.4	20.7	22.1	21.0	21.0	21.1	21.0

농업 부분 배출량은 약 21 백만 탄소 톤 CO2eq.으로 국가 총 배출량의 약 3.0% (2019)

- 가축사육 두수의 증가로 장내 발효 및 가축분뇨처리 온실가스 증가
- 재배(경종) 관련 부문은 벼 재배 면적 감소의 영향으로 배출량 감소 추세

농축산 분야 감축

<2050 농식품 탄소중립 추진전략>발표('21.12)

1. 저탄소 농업기술 및 친환경농업 확산을 통한 농업구조 전환 1) 생산성 증대를 위한 스마트 농업 확산

- 2) 그린바이오 기술을 활용한 저탄소 농업기술 개발
 - a. 대체 가공식품 개발 및 산업화 지원확대 -푸드테크 10대 기술 육성
 - b. 비료 농약 저감을 위한 마이크로 바이옴
- 3) 친환경 농산물 생산 출하 유통 정보 수집 플랫폼 개발

2. 농업(재배)분야 온실가스 감축

- 1) 논 물 관리 모델 개발
- 2) 화학비료 사용 감축 (유기농 농자재 지원 확대)
- 3) 바이오차(biochar) 개발 보급 통한 탄소저장능력 효과

3. 축산분야 온실가스 감축

- 1) 저메탄사료 개발 및 보급 확산
- 2) 스마트 축사 등 과학적 관리를 통한 사료 낭비 방지
- 3) 가축 분뇨 활용 방안 (에너지화 시설 개발, 바이오차 생산과 연계)

- 4. <mark>농업 분야 화석에너지 사용 축소 및 에너지 전환</mark> 1) 시설 농가 저탄소 에너지 전환 (에너지 절약형 시설 기준 마련)
 - 2) 친환경 농기계 보급 (전기 및 수소 농기계 보급)

5. 농촌 재생에너지 확대

- 1) 영농형 태양광 확대
- 2) 농촌 마을 RE100 추진 (마을 발전소)

6. 수산업 활동의 에너지 사용 효율화 및 저탄소 전환 1) LPG 하이브리드 어선 개발

- 2) 양식 및 가공 스마트화 (에너지 절감 장비 보급, 스마트 양식)
- 3) 국가 어항 내 신재생에너지 공급

23.4.10 삭제 내용 [환경친화적 농업 확산] - '50년까지 친환경농업 면적을 전체 경지면적의 30%까지 확대 * 친환경농업 실천 면적(전체 경지면적 대비 %) : ('19) 5.2%→ ('30) 12 → ('40) 20 → ('50) 30 - 농업환경보전프로그램을 확대('50, 400개소)하여 마을단위의 농업환경보전활동을 강화하면서 환경친화적 농업을 확산 - 학교급식·로컬매장·대형유통업체·온라인마켓 등을 통해 친환경농업의 시장을 확대 - 경운 최소화 및 피복작물 식재 등 저탄소 농법 보급 [유통·소비 부문] - 로컬푸드 확대 등 농식품 유통과정에서 발생하는 온실가스 감축 - 50년까지 로컬푸드 직매장을 1,800개소로 확대, '로컬푸드 복합매장' 150개소를 설치 - 식생활 교육 강화 등을 통해 소비 단계에서 버려지는 음식물 쓰레기 감소

유전체 편집 작물

USDA. 유전자 가위(CRISPR/Cas9) 를 이용한 갈변 저항성 양송이버섯(white button: Agaricus bisporus)은 규제 대상이 아니라고 발표 (2016.4.16)

'외래 유전자'가 삽입 되지 않은 변형은 규제하지 않음 (주로 GMO 수출국)

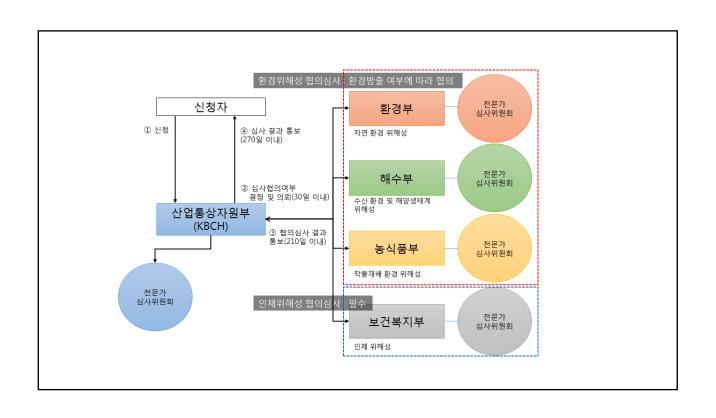
미국(2020) + 동종 유전자 삽입 포함 일본(2019), 호주(2019), 아르헨티나(2015), 브라질(2019)

어떤 형태의 변형도 기존 시스템으로 규제

EU 사법재판소 (2017)

2021-

EU 집행위원회 '새로운 유전체 기술'에 대한 보고서 발행 2023년 안에 새로운 규정 발표 예상.


「유전자변형생물체의 국가간 이동 등에 관한 법률」 일부 개정령(안)

"유전자 가위 등 신기술을 적용한 유전자변형생물체의 개발·이용을 촉진하고 바이오산업의 성장 동력을 확보하기 위하여 신규 유전자변형생물체가 자연적 돌연변이 수준의 안전성을 갖춘 경우에는 국가책임기관의 장에게 위해성 심사 등의 면제를 신청할 수 있도록 하고"

- 1. 개발과정에서 외래 유전자를 도입하지 아니하고 유전자변형생물체를 만든 경우
- 2. 개발과정에서 외래 유전자를 도입하였으나 최종 산물인 신규 유전자변형생물체에 외래 유전자가 남아있지 아니한 경우

국가책임기관의 '사전 검토'를 통해 위해성 심사(7조2), 수입 승인(8조), 생산 승인(12조), 이용 승인(22조4) 면제

- → 인체 위해성,환경 위해성 평가 면제,환경 방출 허용(추적 불가)
- → 업체 입장에서는 개발비 감소 (약 400억/건당)
- → 현재 정부는 시민단체 의견을 수용했다고 주장.(절차적, 내용적)

				_
의안번호	의안명	제안자구분	제안일자	
2116765	유전자변형생물체의 국가간 이동 등에 관한 법률 일부개정법률안(이동주의원 등 14인)	의원	2022-08-03	수입생산제한
2116632	유전자변형생물체의 국가간 이동 등에 관한 법률 일 부개정법률안	정부	2022-07-22	유전자 가위 작물 위해성 심사 면제
2115477	유전자변형생물체의 국가간 이동 등에 관한 법률 일 부개정법률안(권명호의원등10인)	의원	2022-05-03	협의심사폐지(국힘)
2113028	유전자변형생물체의 국가간 이동 등에 관한 법률 일 부개정법률안(신명대의원 등 10인)	의원	2021-10-29	협의 심사폐지 (민주당)
2101911	② 유전자변형생물체의 국가간 이동 등에 관한 법률 일 부개정법률안	정부	2020-07-14	과태료 세분화
	 유전자변형생물체의 국가간 이동 등에 관한 법률 일부개정법률안(신영대의원 등 10인) 유전자변형생물체의 국가간 이동 등에 관한 법률 일 			

수입생산제한: 유채(GT 73) 같은 경우 수입 금지 요청 가능/ 산자부 반대(통상마찰), 현재 EU 방식

협의 심사 폐지: 1) 중복심사 2) 전문가 75명이 참여(전문성결여?) 3) 서류 준비 등 행정 낭비 (관련 기업 및 협회 주장)

vs. 1) 책임소재 불분명, 분야별 심도 있는 검토 불가능(인체, 작물, 환경 등)

2) 동시진행으로 심사 기간이 길지 않음

3) 필수적 자료로 중복 제출 아님 (관련 정부 부처)

- 국가 차원의 (환경/사회적으로) '지속가능한 먹거리 전략'이 없는 상태에서 기술/시장적 접근. 상당수 기술은 연구, 실증 단계로 다양한 측면에서 검증 필요
- 식량주권, 식단 변화, 먹거리 손실 방지, 유기농 및 재생 농업 확대, 먹거리 미보장 등 기후위기 시대의 다양한 쟁점은 기술만으로 해결 불가
- 한국형 스마트팜의 경우 거대 장치 산업으로 출발부터 친환경적 요소가 거의 없음.
- 식물성 대체육_일종의 초가공 식품, 배양육_안전성, 전성분 표시 등의 쟁점이 있음.

대체육 시장의 확대와 온실가스 감축/육류 소비 감소는 검증이 필요함. 광고 규제

cf) 가공식품(첨가제), GM 성분/가공식품에 대한 수용성은 세대별 큰 차이.

- 유전자 가위 작물과 GM 미생물의 규제 완화 시 기존의 GMO 쟁점(표시제, 오염 등)을 재구성. 작물 뿐만 아니라 미생물, 동물 승인 증가 예상.
- 기술적 해결책(technical fix)에 대한 강조는 다양한 사회적 맥락과 쟁점을 가리고 논의를 억제하는 역할.