참고자료

[기후변화] “2100년까지 지구 해수면 91.4㎝ 상승”<유엔보고서>

“2100년까지 지구 해수면 91.4㎝ 상승”<유엔보고서>

뉴욕·런던·상하이 등 주요도시 잠길 수도

연합뉴스 2013/08/20 16:25
http://www.yonhapnews.co.kr/international/2013/08/20/0608000000AKR20130820134700009.HTML?template=5567

(서울=연합뉴스) 이한승 기자 = 현재 수준으로 온실가스가 방출된다면 2100년까지 해수면이 최대 91.4㎝ 상승할 것이라는 조사 결과가 나왔다.

미국 보스턴글로브는 19일(현지시간) 뉴욕타임스가 단독 입수한 유엔 정부간기후변화위원회(IPCC) 보고서 초안을 인용해 이같이 보도했다.

보고서는 지구 해수면 상승을 초래하는 몇 가지 시나리오를 제시했다.

가장 낙관적인 견해는 세계 각국 정부가 온실가스 배출량을 통제하는데 성공한다면 2100년까지 해수면 상승폭이 10인치(약 25.4㎝) 상승에 그칠 것이라고 전망했다.

이는 지난 20세기 해수면 상승폭인 8인치(약 20.3㎝)보다 조금 많은 수준으로, 해안가에 심각한 침식 현상을 가져올 수는 있지만, 대체로는 관리할 수 있는 수준이라고 보고서는 설명했다.

그러나 앞으로도 현재와 같이 온실가스 배출량이 빠른 속도로 증가한다면 해수면은 21인치(약 53.4㎝) 이상 상승하고, 극단적인 경우에는 3피트(91.4㎝) 이상 오를 수도 있다고 보고서는 분석했다.

이 경우에는 해안가에 사는 인구 수억명이 위기를 맞고, 특히 3피트 이상 상승한다면 미국의 뉴욕, 마이애미, 뉴올리언스, 영국 런던, 중국 상하이(上海), 이탈리아 베네치아, 호주 시드니 등 주요도시가 잠길 수 있다고 전망했다.

보고서는 또 화석연료 사용과 같은 인간의 활동이 1950년대 이후 관측되고 있는 대기 온난화의 주요 원인이라고 지적했다.

이 같은 내용은 지난 2007년 발간된 보고서보다 전반적으로 훨씬 악화된 것이다.

당시 유엔이 발간한 보고서에선 인간의 활동이 지구 온난화에 미치는 영향을 90∼100% 정도라고 밝혔지만, 이번 보고서는 95∼100%로 상향했다.

보고서는 최근에 지구 온난화 속도가 느려지고 있다는 주장에 대해 단기적인 현상이라고 반박하며, 지구 온난화를 초래하는 요인들이 더욱 확고하게 역할을 하고 있고, 온실가스 방출의 영향도 더욱 심각해질 것이라고 강조했다.

jesus7864@yna.co.kr

================

IPCC Report: Global Warming Caused By Humans, Impacts Speeding Up

Posted August 19, 2013
http://theenergycollective.com/josephromm/262201/new-ipcc-report-climatologists-more-certain-global-warming-caused-humans-impacts-a

============

[참고] Climate Change 2007: Working Group I: The Physical Science Basis

10.5.4.6 Synthesis of Projected Global Temperature at Year 2100

출처 : http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch10s10-5-4-6.html

All available estimates for projected warming by the end of the 21st century are summarised in Figure 10.29 for the six SRES non-intervention marker scenarios. Among the various techniques, the AR4 AOGCM ensemble provides the most sophisticated set of models in terms of the range of processes included and consequent realism of the simulations compared to observations (see Chapters 8 and 9). On average, this ensemble projects an increase in global mean surface air temperature of 1.8°C, 2.8°C and 3.4°C in the B1, A1B and A2 scenarios, respectively, by 2090 to 2099 relative to 1980 to 1999 (note that in Table 10.5, the years 2080 to 2099 were used for those globally averaged values to be consistent with the comparable averaging period for the geographic plots in Section 10.3; this longer averaging period smoothes spatial noise in the geographic plots). A scaling method is used to estimate AOGCM mean results for the three missing scenarios B2, A1T and A1FI. The ratio of the AOGCM mean values for B1 relative to A1B and A2 relative to A1B are almost identical to the ratios obtained with the MAGICC SCM, although the absolute values for the SCM are higher. Thus, the AOGCM mean response for the scenarios B2, A1T and A1FI can be estimated as 2.4°C, 2.4°C and 4.0°C by multiplying the AOGCM A1B mean by the SCM-derived ratios B2/A1B, A1T/A1B and A1FI/A1B, respectively (for details see Appendix 10.A.1).

The AOGCMs cannot sample the full range of possible warming, in particular because they do not include uncertainties in the carbon cycle. In addition to the range derived directly from the AR4 multi-model ensemble, Figure 10.29 depicts additional uncertainty estimates obtained from published probabilistic methods using different types of models and observational constraints: the MAGICC SCM and the BERN2.5CC coupled climate-carbon cycle EMIC tuned to different climate sensitivities and carbon cycle settings, and the C4MIP coupled climate-carbon cycle models. Based on these results, the future increase in global mean temperature is likely to fall within –40 to +60% of the multi-model AOGCM mean warming simulated for each scenario. This range results from an expert judgement of the multiple lines of evidence presented in Figure 10.29, and assumes that the models approximately capture the range of uncertainties in the carbon cycle. The range is well constrained at the lower bound since climate sensitivity is better constrained at the low end (see Box 10.2), and carbon cycle uncertainty only weakly affects the lower bound. The upper bound is less certain as there is more variation across the different models and methods, partly because carbon cycle feedback uncertainties are greater with larger warming. The uncertainty ranges derived from the above percentages for the warming by 2090 to 2099 relative to 1980 to 1999 are 1.1°C to 2.9°C, 1.4°C to 3.8°C, 1.7°C to 4.4°C, 1.4°C to 3.8°C, 2.0°C to 5.4°C and 2.4°C to 6.4°C for the scenarios B1, B2, A1B, A1T, A2 and A1FI, respectively. It is not appropriate to compare the lowest and highest values across these ranges against the single range given in the TAR, because the TAR range resulted only from projections using an SCM and covered all SRES scenarios, whereas here a number of different and independent modelling approaches are combined to estimate ranges for the six illustrative scenarios separately. Additionally, in contrast to the TAR, carbon cycle uncertainties are now included in these ranges. These uncertainty ranges include only anthropogenically forced changes.

Figure 10.29Figure 10.29. Projections and uncertainties for global mean temperature increase in 2090 to 2099 (relative to the 1980 to 1999 average) for the six SRES marker scenarios. The AOGCM means and the uncertainty ranges of the mean –40% to +60% are shown as black horizontal solid lines and grey bars, respectively. For comparison, results are shown for the individual models (red dots) of the multi-model AOGCM ensemble for B1, A1B and A2, with a mean and 5 to 95% range (red line and circle) from a fitted normal distribution. The AOGCM mean estimates for B2, A1T and A1FI (red triangles) are obtained by scaling the A1B AOGCM mean with ratios obtained from the SCM (see text). The mean (light green circle) and one standard deviation (light green square) of the MAGICC SCM tuned to all AOGCMs (representing the physics uncertainty) are shown for standard carbon cycle settings, as well as for a slow and fast carbon cycle assumption (light green stars). Similarly, results from the BERN2.5CC EMIC are shown for standard carbon cycle settings and for climate sensitivities of 3.2°C (AOGCM average, dark green circle), 1.5°C and 4.5°C (dark green squares). High climate sensitivity/low carbon cycle and low climate sensitivity/high carbon cycle combinations are shown as dark green stars. The 5 to 95% ranges (vertical lines) and medians (circles) are shown from probabilistic methods (Wigley and Raper, 2001; Stott and Kettleborough, 2002; Knutti et al., 2003; Furrer et al., 2007; Harris et al., 2006; Stott et al., 2006b). Individual model results are shown for the C4MIP models (blue crosses, see Figure 10.20).

댓글 남기기

이메일은 공개되지 않습니다.

다음의 HTML 태그와 속성을 사용할 수 있습니다: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>