참고자료

[GMO] 유전자조작 곡물 투여 살충제, 남성 생식능력 떨어뜨려

유전자조작 곡물을 재배할 때 패키지로 사용하는 라운드업 제초제 성분이 수컷 쥐의
생식능력을 떨어뜨린다는 연구결과가 최근 발표되었습니다.

Roundup Disrupted Male Reproductive Functions By Triggering Calcium-Mediated Cell Death In Rat Testis And Sertoli Cells.

de Liz Oliveira Cavalli VL, Cattani D, Elise Heinz Rieg C, Pierozan P, Zanatta L, Benedetti Parisotto E, Wilhelm Filho D, Regina Mena Barreto Silva F, Pessoa-Pureur R, Zamoner A.
Free Radic Biol Med. 2013 Jun 29. pii: S0891-5849(13)00326-2. doi: 10.1016/j.freeradbiomed.2013.06.043. [Epub ahead of print]
Source
Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis-Santa Catarina, Brazil.
Open access: http://www.ncbi.nlm.nih.gov/pubmed/23820267

Abstract
Glyphosate is the primary active constituent of the commercial pesticide Roundup®. The present results show that acute Roundup® exposure at low doses (36ppm, 0.036g/L) for 30min induces oxidative stress and activates multiple stress-response pathways leading to Sertoli cell death in prepubertal rat testis. The pesticide increased intracellular Ca2+ concentration by opening L-type voltage-dependent Ca2+ channels (L-VDCC) as well as endoplasmic reticulum IP3 and ryanodine receptors, leading to Ca2+ overload within the cells, which set off oxidative stress and necrotic cell death. Similarly, 30min incubation of testis with glyphosate alone (36ppm) also increased 45Ca2+ uptake. These events have been prevented by the antioxidants Trolox® and ascorbic acid. Activated protein kinase C (PKC), phosphatidylinositol-3-kinase (PI3K) and the mitogen-activated protein kinases (MAPKs), such as ERK1/2 and p38MAPK have played a role in eliciting Ca2+ influx and cell death. Roundup® decreased the levels of reduced glutathione (GSH) and increased the amounts of thiobarbituric reactive species (TBARS) and protein carbonyls. Also, exposure to the glyphosate-Roundup® has stimulated the activity of glutathione peroxidase, glutathione reductase, glutathione-S-transferase, gamma-glutamyl transferase (γGT), catalase, superoxide dismutase and glucose-6-phosphate dehydrogenase, supporting downregulated GSH levels. Glyphosate has been described as an endocrine disruptor affecting the male reproductive system; however, the molecular basis of its toxicity remains to be clarified. We could propose that Roundup® toxicity, implicating in Ca2+ overload, cell signaling misregulation, stress response of the endoplasmic reticulum and/or depleted antioxidant defenses could contribute to Sertoli cell disruption of spermatogenesis that could impact male fertility.

 

댓글 남기기

이메일은 공개되지 않습니다.

다음의 HTML 태그와 속성을 사용할 수 있습니다: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>